
Service-Oriented Robotic Architecture Supporting a Lunar Analog Test

Lorenzo Flückiger1, Vinh To2, and Hans Utz3

1Carnegie Mellon University, NASA Ames Research Center, Lorenzo.Flueckiger@nasa.gov
2PerotSystems, NASA Ames Research Center, Vinh.To@nasa.gov

3USRA/RIACS, NASA Ames Research Center, Hans.Utz@nasa.gov

Abstract

During the last 18 months, the Intelligent Robotics
Group (IRG) of NASA Ames has transitioned its rover
software from a classic ad hoc system to a Service-
Oriented Robotic Architecture (SORA). Under SORA,
rover controller functionalities are encapsulated as a
set of services. The services interact using two distinct
modalities depending on the need: remote method in-
vocation or data distribution. The system strongly re-
lies on middleware that offers advanced functionalities
while guaranteeing robustness.

This architecture allows IRG to meet three critical
space robotic systems requirements: flexibility, scala-
bility and reliability. SORA was tested during summer
2007 at an analog lunar site: Haughton Crater (De-
von Island, Canada). Two rovers were operated from
a simulated habitat and remote ground control centers,
allowing a full-scale evaluation of our system.

1. Introduction

Advances in robotics capabilities build on advances
in computing systems. Today’s robots are computing
intensive systems, especially when they must operate in
unstructured environments. It is no longer practical for
a single person to carefully craft the entire software for
a robot. Robot software systems are realized by mul-
tiple people working on a large code base, often in a
distributed team. In this paper we present a Service-
Oriented Robotic Architecture (SORA) addressing this
need. SORA has been deployed on rovers used as an ex-
perimental platform for future lunar and planetary mis-
sions. By using “best practices” commonly used in soft-
ware engineering but seldom used in robotics, we ob-
tained a flexible, scalable and reliable software architec-
ture that was demonstrated during a lunar analog field
test.

1.1. Context

The Intelligent Robotics Group (IRG) at NASA Ames
is dedicated to improved understanding of extreme envi-
ronments, remote locations, and uncharted worlds. IRG

conducts applied research in a wide range of areas with
an emphasis on robotics system science and field test-
ing. Current applications include planetary exploration,
human-robot field work, and remote science. For in-
stance, the ”Human-Robot Site Survey” (HRSS) is a
multi-year activity that is investigating techniques for
lunar site survey [1]. During summer 2007, an HRSS
field test took place at Haughton Crater (Devon Island,
Canada) where IRG deployed two rovers on this analog
lunar site above the Arctic Circle [2].

The goal of this last HRSS field test was to sur-
vey large (1 km x 1 km) areas of terrain with the
rovers carrying surface and subsurface imaging instru-
ments. The systematic survey could be coordinated from
ground control or from a nearby habitat. The survey
was performed mostly in an autonomous way to mini-
mize the load on human operators and avoid astronaut
sorties. The rovers used were the latest design version
of the K10 series shown on Figure 1. K10s are four-
wheeled vehicles designed to operate efficiently out-
doors in proximity to human teams. They can drive at
human walking speed (approx. 0.9 m/s) on uneven ter-
rain and significant slopes. The current K10s are out-
fitted with a number of sensors: encoders, inclinome-
ter, compass, sun-tracker, differential GPS, laser scan-
ner and stereo-cameras, allowing them to navigate au-
tonomously. Each K10 also has a payload of different
science instruments: ground-penetrating radar [3], high-
resolution lidar, and science cameras.

The versatility of the K10 rovers makes them con-
venient robotic platforms that can be easily adapted to
different mission scenarios. However, this versatility,
combined with a fast-evolving hardware design and the
complexity of rover autonomy software, require a flex-
ible software system that can be easily adapted and ex-
tended, but is still maintainable by a small team. This
paper describes the software system we designed and
implemented in response to this challenge.

1.2. Software for Exploration Robots

This paper introduces the SORA approach for explo-
ration robots. SORA focuses on a software architecture
applied to the robotic domain, and is independent from a



Figure 1. Evolution of the K10 rover series hardware.
Initially, K10 Orange used servo motors to steer. Later,
K10 blue used DC motors instead. The entire chassis
was redesigned for the third generation, which includes
K10 Red (pictured here at Haughton Crater).

specific control robotic architecture. The IRG rovers are
currently using a two layer – hardware and functional –
control architecture with an Executive responsible for
plan execution. However the SORA approach does not
reflect directly the structure of the robot control architec-
ture. It could certainly be used with the classic 3 layer
robot architecture or possibly with a behavior based ar-
chitecture.

The key point of this approach, described in Section 2,
is to elevate the level of abstraction by defining high
level interfaces to robot services. Each rover function
(locomotion, navigation, pose estimation, power, instru-
ments, etc.) is encapsulated in a self-contained service
offered to the rest of the system through a public inter-
face. Each robot service can also consume and/or pro-
duce telemetry data using a publish/subscribe scheme.
The interactions between services are conducted using
the same interfaces, either internally to the rover con-
troller (colocated function calls), or externally for re-
mote control and monitoring (networked remote ob-
jects). The architecture relies on the use of middle-
ware software, specifically the Common Object Request
Brokering Architecture (CORBA) [4] and the Adaptive
Communication Environment (ACE) [5], allowing the
development of a powerful system, based on well-tested
software libraries, in a short period of time.

The agility of our SORA approach, presented in

Section 3, was demonstrated during the successful
Haughton Crater field test, for which we were able to
quickly develop brand new mission scenarios while in-
corporating new rover capabilities from both hardware
and software points of view. This field test also al-
lowed us to asses the robustness of the architecture and
its resilience to distributed scenarios involving multiple
robots managed from several locations.

The benefits of our approach consists in the flexibil-
ity given by the common interfaces exposed through
services, the scalability obtained by decoupling the in-
teractions between components, the reliability achieved
thanks to the “shielding” of each service as well as the
reliance on thoroughly tested middleware software.

2. SORA Approach

The robotic software developed at IRG needs to sup-
port a variety of fast evolving hardware platforms to ac-
commodate research needs. In addition, IRG uses these
robots for diverse scenarios ranging from indoor human-
robot interactions to long-duration full-scale field tests
in planetary analogs. Finally, the rover controller needs
to integrate smoothly with other systems developed by
IRG, like ground control tools and 3-D visualization sys-
tems, or by other groups like the Rover Executive [6]
that can manage mission level scenarios.

In order to allow a small team working on the rover
software to cope with this level of complexity while of-
fering great flexibility and maintaining scalability, best
practices in software engineering are required. In [7]
we described how adopting some best practices from
the Rational Unified Process (RUP) [8], usually applied
to business environment, can also greatly improve the
scalability and flexibility of a robotic software system in
general. In this section we will present more specifically
our Service-Oriented Robotic Architecture (SORA), the
communication patterns used and how it benefits from
existing middleware.

2.1. Service-Oriented Architecture

Our rover controller consists of a collection of ser-
vices that are started on demand. There is no core con-
troller per se, but an assembly of services that are se-
lected by the user for a specific type of scenario. For
example, a controller could consist of a single Locomo-
tor service when one needs to test the rover locomotion
system, or a dozen interconnected services when a full
mission scenario is performed, as shown in Figure 2.

Each service provides a high level of abstraction by
encapsulating a set of classes realizing a specific func-
tionality. Services can have dependencies on other ser-
vices; this is for example the case for the Navigator ser-
vice that requires a Locomotor service to start and func-
tion. Some other services are totally independent and
simply produce data for potential subscribers. The re-
sult is a “loosely coupled, highly cohesive system” [9],
where the underlying implementation of a service can



Figure 2. Services used for a K10 controller during the Haughton Crater field test. Yellow services are mostly
hardware related, blue services form the core of rover mobility, green represents science instrument services and red
is an external executive encapsulated into a service.

be completely changed without affecting the system as
long as its public interfaces remain identical. Some of
our services were recently created specifically for a mis-
sion scenario. Some other services wrap legacy com-
ponents that were developed in a completely different
framework.

Figure 2 lists the keys services that were used for one
of the K10 controllers during the Haughton Crater field
test. The services represented in yellow provide hard-
ware abstraction. These are, for example, the motor
controllers or sensors like differential GPS. These hard-
ware abstractions are used by the mobility system com-
posed essentially of a Navigator service using a Loco-
motor and Pose Estimator service. The Locomotor is
responsible for the proper locomotion of the K10 four
wheel drive / four wheel steer system. The Pose Esti-
mator integrates information from various sensors with
a Extended Kalman filter. The Navigator uses stereo
vision to compute an optimal path to a goal while avoid-
ing unsafe terrain. The hardware abstractions are also
used by services implementing science instruments (rep-
resented in green on Figure 2). These are the only ser-
vices that were different on the two K10 rovers operating
at Haughton Crater, since the rovers had the same loco-
motion hardware but different science payload. Finally,
the mission plan is controlled by an Executive [10]. This
Executive, developed by another group, was encapsu-
lated into a service, enabling it to work seamlessly with
the rest of the system.

2.2. Service Details

To explain in more detail what defines one of our
rover software service, we will illustrate the discussion

with the Locomotor service represented in Figure 3.
This service is responsible for the proper control and
coordination of the eight motors used for the K10 lo-
comotion. The inputs are high level motion commands
expressed in the rover coordinate system. The outputs
are synchronized position/velocity/acceleration trajecto-
ries for motors. The Locomotor service uses several
“modules” (sets of classes) from the CLARAty [11]
system: motor, trajectory, locomotor model,
locomotor, plus a set of supporting classes. De-
spite the many classes used to implement the locomo-
tion function, the service completely abstracts this com-
plexity for higher-level usage. The Locomotor service
simply exports a single abstract interface to control the
locomotion system and query its state.

A typical service developed in our SORA framework
exhibits the following characteristics:
Exposes a public interface for control and state
query. A service may export more than one interface
if necessary. These interfaces are defined using the
CORBA Interface Definition Language (IDL) [12] and
code is automatically generated for the desired imple-
mentation languages with an IDL compiler. This allows
a unique interface definition to be shared by different
projects and across multiple languages. For example,
the core controller is written in C++, but it interacts with
a visualization tool written in Java. Figure 4 shows the
interface exposed by the Locomotor service: it is limited
to the methods that are of interest for other services or
users.
Encapsulates a set of interconnected classes. The
user of the service does not need to interact with a com-
plex framework providing the desired behavior, but only
with a simple clean interface. This is illustrated with



Figure 3. Details of the Locomotor Service (only key classes are shown for clarity).

the Locomotor service of Figure 3. This is a relatively
simple service (compared to the navigation system for
example), but already encapsulate a number of classes,
mostly coming from a different framework (CLARAty).
Thus the service shields the user from all the complexity
associated with a large code base.
Can publish telemetry as data structures. A notifi-
cation system allows sending data structures, also de-
fined using IDL, to multiple subscribers. This is used
when data distribution is more important than control
by method calls. This topic will be detailed in the next
Section 2.3. In our system, service state is usually acces-
sible by either requesting information using the service
interface, or by subscribing to a given class of messages.
In both cases, the information is transported using the
same CORBA structure.
Is self-contained and dynamically loadable. All the
required dependencies (objects or other libraries) are
encapsulated in the service, freeing the user of com-
plex dependency tracking. The “Component Config-
urator” pattern [13] is used to combine the services
in a full system. The controller uses run-time link-
ing to load and configure individual services for a spe-
cific scenario. Our services currently are based on the
ACE Service Object framework [14], which pro-
vides advanced component configuration like run-time
re-configurability. The services can be discarded or re-
enabled at run time, which can reduce memory footprint,
and also encourage to design a system resilient to con-
figuration changes.

2.3. Communication Patterns

The various services composing a rover controller in-
teract using two different schemes: 1) remote object in-
vocation when dependency between components is re-
quired, and 2) data distribution using a publish/subscribe

mechanism when the components can be completely de-
coupled. The scheme used depends of the nature of
the required interaction. The first mode is used when a
service has knowledge about another service and needs
to send commands to it. The second mode is used
when a service is processing data generated by others,
without requiring explicit knowledge of these other ser-
vices. In addition, the use of a feature rich middleware
like CORBA allows the communication to be unified
when services are colocated (same address space) or dis-
tributed (through the network).
Remote Method Invocation Some services have de-
pendencies on others. For example, the Navigator ser-
vice requires a Locomotor service to function properly.
This type of dependency is depicted with the stereo-
type <<use>> in Figure 2. The detail of the interac-
tions between the Navigator and Locomotor is shown
in Figure 5. The “ball and socket” representation clearly
shows the interface Locomotor that is provided by Lo-
comotor and required by Navigator. Services have the
ability to discover interfaces provided by others. Once
the interface with the desired identification is discov-
ered, a service can bind to it. This binding allows the
requester service to send commands to the provider us-
ing a method call on a remote object.

An additional level of decoupling is supported in our
system by the systematic use of “Asynchronous Method
Invocation” (AMI) [15]. This functionality is offered
by CORBA, and uses the IDL compiler to generate al-
ternate method calls for the asynchronous mode. The
server side implementation (realization of a service) is
greatly simplified by the use of blocking semantics. On
the other hand, the client side (which calls methods of a
service) greatly benefits from a non blocking call. For
example, a Navigator command can take minutes to
complete, but often a caller like the Executive would like
to have the method return immediately to simplify its in-



ternal behavior. It will be notified by a callback when the
command finally completes (or fails). All the complex-
ity of AMI and the threading safety is handled by the
middleware.

Data Distribution A second mechanism is used in our
system to allow interactions between services without
introducing any dependency between them. The ser-
vices can exchange data using a publish/subscribe mech-
anism provided by the CORBA Notification Service.
This mode works best when data need to be distributed
at high frequency among multiple entities. This type
of relationship is depicted on Figure 2 with the stereo-
type <<flow>>. This is not so much a dependency
relationship as an indication of the data flow direction.
Two services linked by a <<flow>> do not know of
each other’s existence; they only share the knowledge of
the data structure exchanged. For example, the Pose Es-
timator service of Figure 2 subscribes to messages of
type SOrientation. Doing so, it will receive the
data published from any source of SOrientation,
like the Compass or Sun Tracker services. There is
no need to reconnectthe controller when a source of
SOrientation is removed from—or added to—the
system.

Unified Interfaces The combination of abstract inter-
faces between services and the features of CORBA pro-
vides the system with a powerful mechanism: from a
client point of view, the method call on a public inter-
face is exactly the same if the service is localized in the
same address space or on a different computing node
and accessed through the network. When the services
are distributed over the network, the method calls are
appropriately routed using the chosen protocol (TCP for
our system). However, when the services are colocated,
the method calls are optimized and do not go down to
the network layer, but simply use normal function calls.
The same benefit applies to data distribution, where data
is either transmitted over the network when consumers
and producers are on separate computing nodes, or uses
local function calls to transfer data between services ex-

Figure 4. Interface exposed by the Locomotor Service

tremely rapidly when they are localized.
This feature is shown on Figure 5 which repre-

sents a few services participating in a rover controller,
K10 Brain, interacting with services running on two
other computers: Habitat Control and Remote
Teleoperation. All the services on the K10
Brain are localized and then communicate in a opti-
mized way using a few function calls. The Habitat
Control workstation is located close to the rover op-
eration site, and benefits from high reliability and high
bandwidth communication with the rover. Finally, the
Remote Teleoperation workstation located in a
remote NASA Center only has a high latency, medium
bandwidth satellite link with the rover. This Lunar Ana-
log setup was realized during our Site Survey Field test
where the Habitat Control and K10 Brain were located
at Devon Island (Canadian High Arctic) and the Remote
Teleoperation role was played by the Johnson Space
Center (JSC) in Houston, Texas.

As shown on Figure 5, the exact same interface
Locomotor is used both by a local service –K10 Nav-
igator– or by an external service –Locomotor Con-
trol– which represents a graphical control panel used
to teleoperate the rover. The same figure also shows
that the Pose Estimator is publishing data of the form
SPoseEstimate which is consumed transparently by
a localized service –Navigator– or by remote services
–habitat Viz and remote Viz– which represents different
instances of the same executable: a 3-D visualization
and monitoring system.

These unified interfaces between services are provid-
ing the following benefits:
• flexibility of the system, since the services can be

re-arranged on different nodes depending on the re-
sources and scenarios.

• scalability, since adding more rovers and control sta-
tion are done in a transparent way by adding services
running on new computing nodes.

• remote inspectability, allowing unit testing during
development phase and online supervision during
operations.

2.4. Extensive Use of Middleware
Most of the architecture paradigms described in the

previous sections would not have been realizable with
such a robust and extensive set of features without the
support of middleware. The communication between
the services of our architecture fully relies on multiple
CORBA features and services: Remote Method Invoca-
tion, Asynchronous Method Call and Notification Ser-
vice for data distribution. Several features of our system,
like the Component Configurator pattern, have been im-
plemented using the Adaptive Communication Environ-
ment.

In addition, to help us bring the power of CORBA to
our application, we have adopted the robotic middleware
Miro [16]. Miro makes extensive use of CORBA as a
communication infrastructure and customizes it for the



Figure 5. Publish/subscribe models across nodes and unified interfaces

robotic domain.
Miro offers support for the following paradigms to the

robotic world:
• Distributed or colocated communication using the

CORBA infrastructure.
• Publish/subscribe capabilities to distribute telemetry

among components of the system using the Notifiac-
tion Service.

• A Parameter and Configuration Management frame-
work allowing parametric component service assem-
bly.

• A mechanism to record all telemetry messages and
replay them offline [17].

Thanks to the use of CORBA middleware, SORA
would easily be transferable to robotic flight hardware
providing less resources than used in K10 rovers. The
CORBA specification provides extensions to support
real-time communication, and minimized versions of
the specification with very small footprint are available.
The ACE/TAO framework used for SORA is indeed
deployed in numerous telecommunication applications
with embedded processors and in the aerospace and de-
fense domain, which requires extremely reliable perfor-
mance on hard real-time systems [18]. Of course, some
high end algorithms used in few SORA services would
need to be optimized for slower processors, but the mid-
dleware would not be the limiting factor.

3. Results

Quantitative measures to evaluate a software architec-
ture are difficult to formulate, even more for research
projects. Nonetheless we can provide results on three

topics: 1) agility of the software during development, 2)
pure performance, usability and reliability of the system
during operations, and 3) assessments of the proposed
concepts in view of the field test experience.

3.1. Software development agility
In 18 months, IRG conducted three significant field

experiments with the K10 rovers. Each of this experi-
ments had a very different mission scenario with differ-
ent instrument payloads. In addition, a major hardware
revision, including motors, motor controllers and kine-
matic parameters, was performed before each of the ex-
periments. Finally, significant capability improvements
were incorporated, like a continuous navigation system
(compared to the previous stop-and-go method). Our ar-
chitecture allowed all these transitions without rupture
in our rover usage, by carefully identifying the inter-
faces to expose and progressively encapsulating rover
functionalities into services.

Adoption of this architecture has greatly boosted pro-
ductivity. In the 6 months preceding the Haughton
Crater field test, the small team working on the rover
software (about 3 people on average) was able to dras-
tically improve the locomotion and navigation system,
integrate new science instruments (GPR, LIDAR), de-
velop ground control tools, and implement a complete
mission scenario. The service architecture not only ben-
efited the core rover team, but all parties providing soft-
ware for the same field test, by providing them with a
robust platform for software integration. In particular,
the following tools were developed by external teams
and directly interact with the rover operations:
• Viz: 3-D visualization environment monitoring mis-

sion progress and collected science data [19].



• Plexil: The rover executive managing the mission
plan [10].

• A Google Earth plug-in plotting rover progress for
mission outreach.

• The sun-tracker instrument ported from a previous
rover framework [20].

These different programs (C++ and Java alike) are bind-
ing to one or multiple interfaces published by the rover
services to obtain a seamless integration, localized or
distributed over the network.

3.2. Performance during rover operations
The SORA used for the Haughton Crater field test

allowed a single operator to control and monitor the
progress of two rovers performing their survey. Most
of the rover telemetry was shipped in real time to the
habitat and displayed using the 3-D visualization tool,
providing a comprehensive view of the situation. For
convenience, when the two rovers were operating on dif-
ferent sites, or when a lot of experiments by the remote
NASA ground control were conducted (thus requiring
more attention), we had one rover operator assigned for
each rover. Even in this situation, the system definitely
allowed a small team to coordinate a full site survey car-
ried out by two robots using several instruments.

During the field test, the two rovers drove for more
than 40 km within two weeks of operations. The only
controller issue we had was due to communication fail-
ure with the LIDAR (which we did not have the com-
plete interface protocol). Otherwise, the restart of the
controller during mission scenarios were due to manual
interventions, for example to get out of a potentially un-
safe situation during navigation. The system was also
extremely resilient to communication drop-out. For ex-
ample, on one site the topography of the terrain put the
rover out of line-of-sight from the WiFi antenna about
30% of the time. The rover continued to operate au-
tonomously during these periods and the visualization of
the low level telemetry was resumed as soon as the rover
got WiFi communication again. However, when the
drop-out was longer than approximatively 10 minutes,
the connection between a client and a servant would be
lost. This is due to the TCP/IP protocol used to link the
services, which would hit a timeout limit. In these cases,
the client had to reconnect to the servant. For example
with the 3-D visualization tool, this simply consist in
pressing on a button connect, but it implies to con-
struct clients with a re-connect functionality.

The communication performance between the ser-
vices was quite satisfactory. The automatic optimiza-
tion of the CORBA event distribution when localized
or distributed freed the developers from having to hand-
craft different communication schemes. The amount of
data transfered was relatively large. For example, most
hardware services published telemetry at either 5 Hz or
10 Hz. The telemetry log saved on disk onboard the
rover represents about 100 MB of data per hour of oper-
ation (this is not including the navigation images which

represent about 6 GB/hour of raw image data). We did
not encounter any limitation due to the CORBA mid-
dleware used. The external limitation obviously comes
from the bandwidth available between a rover and the
habitat or ground control. That is why, the telemetry
stream shipped over the network was only a subset of
the full data exchanged on the rover. This scheme is
ideal because it avoids too much traffic on slow net-
works, while keeping the option of a full debugging ca-
pabilities since the rover keeps a full log of information
onboard.

3.3. Validation of proposed concepts

The SORA approach proved to be very effective for
the type of scenarios that will be encountered during lu-
nar and planetary missions. The flexibility of the system
allows us to quickly modify or add capabilities to the
robots. The system is scalable, from one robot with a ba-
sic controller (for example only a Locomotor service en-
abling teleoperation) to multiple robots offering a large
number of services. The ability to operate the robots
with various modalities from different locations is also
key to optimize the communication infrastructure, max-
imize code reuse, and minimize the support team. The
following types of interactions were conducted:

• Fully autonomous rover status reporting when
within communication coverage.

• Working in collaboration with a simulated astro-
naut conducting a sortie; the astronaut monitored the
robot using a small hand-held laptop.

• Control and monitoring from the simulated plane-
tary habitat by a minimal team.

• Teleoperation with slow communication and long
time delays by a remote ground control center.

All of these scenarios worked well. Performance could
be further improved using a more advanced quality-of-
service feature in the Notification Service for teleme-
try sent over the high latency and low bandwidth link
to ground control. In essence, the Notification Service
does not allow the user to specify bandwidth limits for
event consumers, which can easily flood a network with
limited bandwidth.

The unified interfaces exposed by the active services
proved to be effective down to the microsecond time
scale:

• Microseconds are necessary to route data between
services localized on the rover.

• Milliseconds are used when the same data goes
down to the network from the rover to the habitat.

• Seconds can elapsed when shipping telemetry to re-
mote ground control.

Again, this scalability capability is directly provided by
advanced middleware.



4. Conclusion and Future work

This paper presents the Service-Oriented Robotic Ar-
chitecture (SORA) developed in the context of space
robotics. Its purpose is not to define another control ar-
chitecture, but to support robotic software through the
adoption of existing best software engineering practices.
This approach provides the following benefits:
• Scalability is enabled by encapsulating functional-

ities into services and decoupling interactions be-
tween components. In addition, the services can be
reused for various scenarios, or replaced by new ver-
sions without affecting the system.

• Flexibility is provided because a unique description
of common interfaces generates multiple language
bindings and automatic optimization for colocated
and distributed scenarios.

• Reliability is improved because each service is well
insulated from the rest of the system, and services
are connected by middleware that has been exten-
sively tested by a large community.

We demonstrated the validity of SORA during a full
scale field test performed at a lunar analog site. The
field test included two robots coordinated from a local
habitat as well as from a remote ground station.

The agility of SORA will continue to be demonstrated
by re-using and adapting the current system to a new
robot IRG is introducing: K10 Mini, which will be a
20 kg total mass rover designed to carry few science in-
struments for future low cost lunar missions. In addi-
tion we plan to increase the efficiency and resilience of
SORA for low quality communication links to ground
control. This could be done by replicating a subset of
events with lower frequency in a “low bandwidth chan-
nel” or by using an alternate data distribution service.

Beyond the SORA work applied to our own robotic
experiments, we are especially interested in promoting
the use of generic robotic system interfaces. We are con-
vinced that, rather than trying to advocate the use of a
particular robot architecture, there is more benefit to the
robotics community in collaborating at the level of inter-
faces. Finally we would like to foster the use of middle-
ware in the robotic domain. We believe that, in regard to
the increasing complexity of robot software, one answer
is to rely on strong software foundations developed and
tested by the large software community.

Acknowledgments

This work was supported by the NASA Exploration
Technology Development Program (Human-Robotic
Systems project).

References
1. T. W. Fong, M. Bualat, L. Edwards, L. Flückiger, C. Kunz, S. Y.

Lee, E. Park, V. To, H. Utz, N. Ackner, N. Armstrong-Crews, and

J. Gannon, “Human-robot site survey and sampling for space ex-
ploration,” in AIAA Space 2006, September 2006.

2. T. Fong, M. Allan, X. Bouyssounouse, M. G. Bualat, J. Croteau,
M. C. Deans, L. Flückiger, S. Y. Lee, D. Lees, L. Keely, V. To,
and H. Utz, “Robotic site survey at Haughton Crater,” in to be
published, iSAIRAS, 2008.

3. S. Kim, S. Carnes, A. Haldemann, C. Ulmer, E. Ng, and S. Ar-
cone, “Miniature ground penetrating radar, CRUX GPR,” in
Aerospace Conference. IEEE, March 2006.

4. O. M. Group, “CORBA/IIOP specification,” OMG, Framingham,
MA, Tech. Rep., April 2004.

5. D. C. Schmidt, “The ADAPTIVE Communication Environment:
Object-Oriented network programming components for develop-
ing client/server applications,” in Proceedings of the 12 th Annual
Sun Users Group Conference. San Francisco, CA: SUG, June
1994, pp. 214–225.

6. M. Dalal, T. Estlin, C. Fry, M. Iatauro, R. Harris, A. Jonsson,
C. Pasareanu, R. Simmons, and V. Verma, “Plan exectution in-
terchange language (PLEXIL),” NASA Technical Memorandum,
November 2007.

7. L. Flückiger and H. Utz, “Lessons from applying modern software
methods and technologies to robotics,” in Proceedings of the Soft-
ware Development and Integration in Robotics Workshop. Rome,
Italy: ICRA, April 2007.

8. P. Kroll and P. Kruchten, The Rational Unified Process made easy.
Addison-Wesley, 2003.

9. E. P. F. (EPF). OpenUP (unified process) web site. [Online].
Available: http://www.epfwiki.net/wikis/openup/

10. V. Verma, V. Baskaran, H. Utz, and C. Fry, “Execution, moni-
toring, and fault protextion demonstrated on a NASA Lunar rover
testbed,” in to be published, iSAIRAS, 2008.

11. I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin,
“CLARAty and challenges of developing interoperable robotic
software,” in IROS. Las Vegas, Nevada: IEEE/RSJ, October
2003.

12. Object Management Group. (2006) OMG IDL. [Online].
Available: http://www.omg.org/gettingstarted/omg idl.htm

13. D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and Net-
worked Objects. Wiley & Sons, 2000.

14. D. C. Schmidt and S. D. Huston, C++ Network Programming.
Addison-Wesley Longman, December 2002, vol. 2.

15. D. C. Schmidt and S. Vinoski, “Programming asynchronous
method invocations with CORBA messaging,” C++ Report,
vol. 11, no. 2, February 1999.

16. H. Utz, S. Sablatnög, S. Enderle, and G. K. Kraetzschmar, “Miro
– middleware for mobile robot applications,” IEEE Transactions
on Robotics and Automation, Special Issue on Object-Oriented
Distributed Control Architectures, vol. 18, no. 4, pp. 493–497, Au-
gust 2002.

17. H. Utz, G. Mayer, and G. K. Kraetzschmar, “Middleware log-
ging facilities for experimentation and evaluation in robotics,”
27th German Conference on Artificial Intelligence (KI2004), Ulm,
Germany, September 2004, workshop on Methods and Technol-
ogy for Empirical Evaluation of Multiagent Systems and Multi-
robot Teams.

18. ACE and TAO sucess stories. [Online]. Available:
http://www.cs.wustl.edu/ schmidt/TAO-users.html

19. D. Lees, L. Keely, and L. Edwards, “Viz explorer - a 3-d visual-
ization tool for planetary exploration,” in EclipseCon 2006, Santa
Clara, CA, March 2006.

20. M. C. Deans, D. Wettergreen, and D. Villa, “A sun tracker for
planetary analog rovers,” in iSAIRAS, September 2005.


